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In this work, we revisit the electron-transfer rate theory, with particular interests in the distinct quantum
solvation effect and the characterizations of adiabatic/nonadiabatic and Markovian/non-Markovian rate
processes. We first present a full account for the quantum solvation effect on the electron transfer in Debye
solvents, addressed previously Jn Theor. Comput. Chen2006 5, 685. Distinct reaction mechanisms,
including the quantum solvation-induced transitions from barrier crossing to tunneling and from barrierless
to quantum barrier crossing rate processes, are shown in the fast modulation or low viscosity regime. This
regime is also found in favor of nonadiabatic rate processes. We further propose to use Kubo’s motional
narrowing line shape function to describe the Markovian character of the reaction. It is found that a non-
Markovian rate process is most likely to occur in a symmetric system in the fast modulation regime, where
the electron transfer is dominant by tunneling due to the Fermi resonance.

I. Introduction processes being often observed experimentally? In this work,
we try to address this issue, along with the quantum solvation
effect and the adiabatic versus nonadiabatic nature of ET rate
ocesses.
B. Background. Previous work on ET theory focuses mainly
on the rate constant description. Consider Figure 1, the
schematics of the simple doreacceptor ET system of eq 1.

— o Here, the relevant (macroscopic) solvent potential surfages
Hr = hyallaj + (h, + E°)[bb] + V(jatb| + [ba) (1) andV, are plotted as the functions of solvation coordirldte:
h, — ha. The solvation energy for the ET from the donaltto
the acceptorbsite is given by 3

A. Prelude. Electron transfer (ET) is the simplest reaction
system but plays a pivotal role in many chemical and biological
processes. The field of ET research has grown enormously sincd’”
the 1950821 The standard ET systeabath model Hamiltonian
reads

Here, E° denotes the reaction endothermicity,the transfer
coupling matrix element, anid, (hy) the solvent Hamiltonian

for the ET system in the donor (acceptor) state. The system is _ ey _
initially in the donor|alsite, with the solvent (bath) equilibrium A= trg(Up3) = LD (3)
density matrixpz® 0 e"(<D at the specified temperatufle The second identity here defines the notatidrfor the bath

_ The ET system of eq 1 can be treated as a spin-boson problemy,semple average, where the trace runs over all the solvent
in the context of quantum dissipation. We have recently (bath) degrees of freedom. At the crossihl+ E° = 0) point,
constructed a general theory of quantum dissipa#otf,which Va=\Vp = (E° + A)2(42). It is the celebrated Marcus' ET
results in an analytical solution to the ET dynamics in a Debye (o4 ction barrier height. Thus, Figure 1 also summarizes the
(solvent) dissipatioA>2°It is noticed that the exact construction  \1arcus’ nonadiabatic rate exbression

leads always to a generalized rate equatfoi?

: £ oo R VA (E° + 2)?
PA)=— [o dekit — 9P, + [ deK(t— DP(1) (2) S e P kT “)

Here, k(t) and K'(t) denote the forward and backward rate This rate (constant) can be derived readily from eq 1, by using
memory kernels. On the other hand, one often finds in practice the classical or static FranelCondon approximation, followed
that the simple kinetic theory, with a Markovian rate constant by the classical fluctuationdissipation theorenU20— W3
description, can well describe the observed rate process. The= 2kT4. It does not consider thdynamicsolvation effect,
resulting reactant populatid®y(t) decays exponentially toward  which is characterized by the relaxation time and also associated
its equilibrium value at a given temperature. Note that formally with the viscosity of the solverit 16 Such effect was first
the rate constant is just the integrated rate kernel over time. Isstudied by Kramers in his classical Fokkd?lanck equation
there any quantitative justification for the Markovian rate approach to the rate theory of isomerization reactfomhe
- - — — resulting rate shows the celebrated turnover behavior that the
*'é"(")rrtré’; tgﬁ diﬁhe:ﬂh%ffeg_%gifef;iﬁggﬁc educn: yyan@usthk,  "@te has @ maximum in an intermediate viscosity regff.

P J ; " oo e VY o This clearly demonstrates the dual role of solvent on reaction
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matrix p. In the absence of time-dependent external field, the
generalized quantum master equation reads

pO) == i2p() — f, de T1(t = 2)p(2) (6)

where/p =h~1[H, p], with H = [(Hr[being the reduced system
Hamiltonian;I1(t — 7) denotes the dissipation kernel. Note that
—— ¥ > eq 6 is formally exact; in fact, the involving nonperturbative

ME® - IMeE® + A3 U I1(t) can be generally expressed in terms of continued fraction
Figure 1. Schematics of solvent potentials andV;, for the ET system formalism?23.33.34
in the donor and acceptor states, respectively, as functions of the To obtain the dynamic rates, we shall eliminate the coherent
solvation ﬁoom_“f_‘at@ Edthi_ ha?Vb " Va — E°, with E :e'“lg the | componentsy; j = k, from eq 6, and retain the populations
ET endothermicity and = [litthe solvation energy. The classical - p ) — (1) only. To do that, let us recast eq 6 in its Laplace
barrierless system is that & + 1 = 0. . .

frequency-domain resolution

is treated as a Brownian particle moving on a single adiabatic p(s) — p(0) = —[i/+ II(s)]A(s) @)
double-well potential surface.

The dynamic solvation on nonadiabatic ET has been incor-
porated in the quantum extension of Marcus’ theory, formulated
via the Fermi golden rul&-21 The solvation coordinate is now

and then arrange it into the block matrix form for the population
and coherence vectorB, = {g;} andC = {pj; ] = Kk}, with
C(t = 0) = 0, respectively. We have

a time-dependent stochastic operatift) = e"""Ue - and SP(S) — P(O) = —T(SP(S) — ToAS)C(S 8a

assumed to follow the Gaussian statistics. Thus, the dynamic (8 = P(O) PIP(S) ~ Ted9C(S)  (83)

solvation is completely characterized by the correlation function (9 = ~Te P(s)ﬁ’(s) _ ch(S)C(S) (8b)
C(t — 7) = U(t) — Al[U(z) — 4]0 () with the transfer matrices,sh, Tpc, Tcr, and Teg, arising from

. . . ) the corresponding rearrangement gft I1(s). Eliminating the
The Fermi golden rule formalism is valid for an arbitrary form  -oherent component leads to

of the solvation correlation function. But like the Marcus’ theory,
it is restricted in the second-order transfer coupling regime. The sP(s) — P(0) = K(s)P(s) (9a)
resulting rate does not show the Kramers’' falloff beha#iét
that involves the barrier recrossing and thus depends on higheror, equivalently
order transfer coupling. The improved approach has been
proposed, on the basis of the fourth-order perturbation theory, S (4 — t L
followed by certain resummation schenfe$’3° The resulting PO = Z fO dr K;{t = DP(7) (9b)
rate does support a smooth transition between nonadiabatic and
adiabatic ET reaction, recovering properly the Kramers’ turnover The involving rate resolution matrix is obtained as
behavior?8.29

In this work, we adopt the reduced density matrix dynamics Y T R -1+
approach that is closely related to our recent development of K(s) = j; dte "K() = Teds+ Ted "Tep— Tep (10)
guantum dissipation theo/f.24 With the aid of the analytical _
expression for the nonperturbative and non-Markovian ET IS element K(s) resolves the state-to-state dynamic rate
rate2526we will elaborate in detail the quantum solvation effects Mmemory kernel I(t). The rate matrix satisfies the relatign
in both the adiabatic and nonadiabatic reaction regimes andKik = 0. as inferred from the population conservationp ¥

further investigate their relations to the Markovian versus non- 2 P = constant. _
the two-state ET system (cf. eq 1 and Figure 1) of the present
study, only a single dynamic rate equation is independent. That

is eq 2, which reads in the Laplace domain as

The remainder of this paper is organized as follows. Section
Il reviews the generalized kinetic rate theory, constructed readily
via the reduced density matrix dynamics. In section IIl, we
decompose the total rate into its adiabatic and nonadiabatic
components and also analyze the Markovian versus non-
Markovian nature of population transfer dynamics. We propose A A
to use the Kubo’s motional narrowing function, originally used Here,k(s) = L{k(t)} = —Kaa(s) andk'(s) = L{K'()} = Kax(s)
in the context of optical spectroscopy?2to characterize the — are thg forward and bagkward rate re_solutlons, respectively. The
Markovian character of the ET rate process. Section IV presentsinvolving transfer matrices for the simple ET system of eq 1
a full account of the effect of quantum versus classical solvation have all been identified; see the eq 32 of ref 25:
on some representative ET reaction systems. Section V analyzes

sP(9) — P,(t=0)= —k(9P() + K(9P,(9 (11)

the population transfer dynamics, with the focus on their Top=0, T, =11 ] (12a)
adiabatic/nonadiabatic and Markovian/non-Markovian charac- Al -1
ters. Finally, section VI concludes the paper. Wk 7+ iV
- TCP:[iV/h 2— VI ] (12b)
Il. Non-Markovian Rates: Theory
A. Generalized Rate Theory and DissipationLet us define Tee= ’X* —I(E+ AR y:_ (B 44 /h] (12c)
the dynamic rates via the evolution of reduced system density y x+i( )
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Here be introduced d416
X=Hpape Y= Hpgay 2= igp (13) i = kNi + kl (18)
and their complex conjugatte|§|j]ﬁykk = [jjkk are the only AR
nonzero elements of thi-tensor. Denote also As k andkya can be evaluated via eqs 15a and 16, respectively,
_ . o with s= 0, the above equation can in fact be considered as the
a(s) = s+ X9 + (RE +4) (14) working definition of adiabatiks. We shall show later thdia
The final expressions for the rate resolutions are then is relatively very insensitive (compared kQa) to the transfer

coupling strengthv variable (cf. Figure 5). Therefore, it can be

_2IVP? a(s) + y(s) practically used to describe the adiabatic rate process that
k(s) = }2 R |a(s)|2 _ |y(s)|2 (152) involves only the ground solvation surface via the diagonaliza-
tion of eq 1. The ratiokya’ka can be considered as the
and adiabaticity parameter. The ET reaction is adiabatic whgnh
ka > 1 and nonadiabatic whea/ka < 1.
k(9 = 2|V|? R [a(s) + Y(9)[1 — ihz*(9)/V] B. Characterization of Markovian versus Non-Markovian
K2 |(x(s)|2 _ |y(s)|2 Rate ProcessesWe now turn to the Markovian versus non-
(15b) Markovian nature of the reaction. The general theory of rate

. . . ) ) o presented in the previous section assumes always non-Mark-
The involving parameters, defined in eq 13, can in principle be oyian. On the other hand, the experimental observations appear
evaluated in terms of continued fraction formalism of the often Markovian. It is desirable to have a working criterion on
nonperturbative dynamics of reduced density mat:3*In the nature of ET kinetics. In contact with experiments, let us
particular, the continued fraction expressions of these parametersgnsider the scaled population

have been solved analytically for the Debye solvent model,

where the solvation correlation assumes a single exponential Pj(t) — Pj(oo)
form.25 A)=——————— J=ab 19
o A TORET® )
Ill. Nature of Rate Processes: Adiabatic versus ) . )
Nonadiabatic and Markovian versus non-Markovian It does not depend on the state index due to the identiByof
) ) . ) . ) (t) + Po(t) = 1. The simple (Markovian) kinetic rate equation,
A. Adiabatic—Nonadiabatic Rate Decomposition.It is Pa(t) = — kPs(t) + KPy(t), can be represented in terms of the

noticed that the ET in the short-time< #/V) regime is always  gcaled population as

nonadiabatic, ok O V2. This fact can be inferred from the

observation that the backscattering events, responsible by the AMar(t) = —WA,, (1) (20)
higher-order transfer coupling, are yet to occur. In Appendix

A, we so!ve egs 8 anq 12.in the weak transfer coupling limit The involving decay constany = k + k', could be measured
and obtain the nonadiabatic counterpart of eq 15 readily if the rate does behave like Markovian. The forward
5 and backward reaction rate constants can then be evaluated as
kna(S) = zlzRefo‘” dt exp[ —st — g(t)] (16a) k= wKeq(1 + K?u) andk = w/(1 + Keg), resp_ectively._ _
h A non-Markovian rate process can be described bitetic
) rate memory kernelv(t — 7) via
with
. t ~
o) = 5 (E°+ )t + hiz [lde [ dve@)  (16b) AW == fo drit — D)AE) (21)
In other words, one can deduce the rate kernel from the
The correspondingna(s = 0) is the well-established quantum  population evolution asu(t) = L~Y[1 — sA(s)J/A(s)}. Here
nonadiabatic rate expressi®rt:3°The Marcus’ expression, eq  A(s) denotes the Laplace transform aft), while L=} the
4, can be obtained via setti@ft) ~ C(0) = 21kgT that amounts inverse Laplace transform, that is
to the static (slow-modulation) approximation, followed by the
classical fluctuatiorrdissipation theorem.

Consider now the long-time regime, involving only the
integrated rate kernel, that is, the rate conskasatk(s = 0) or
k' = k'(s= 0). Hereafter, rate constant will be referred in short In Appendix B, we present the explicit expressionwgs) in
as rate if it causes no confusion. For the later use, denote alsaterms ofk(s) andk'(s); see eq B7, together with some useful
the reaction equilibrium constant identities in relation to the Laplace transform. Unlikés), the

population evolution alone is in general not sufficient to
_ Py() _ks=0) _k (17) determine bottk(s) and K (s).
€0 Py(o0) K(s=0) K Equivalent to the kinetic rate kern@l(t) defined in eq 21,
one may also define the time-local r&ut) via A(t) = —W(t)A-

It is noticed thak < kya is expected to hold in general; see (t). Note that, while the kerndl(t) is always well behaved, its
Figure 6 and its related comments, especially on the case oftime-local counterpart\(t) = —A(t)/A(t), may diverge at
exception. This inequality may be inferred from the fact that certain time, sayt', due to the possibility oAA(t') = 0 in an
the totalk contains the backscattering contributions, while the underdamped non-Markovian rate process. At tithethe
nonadiabatidya does not. The decomposition of the total rate effective kinetics reduces to the zero-order rate process since
into its nonadiabatic and adiabatic components may thereforeW(t')A(t') remains finite. Moreover, eq 21 implies also thgt

1— sA(9)

w(s) = L{W(D} = [° dte”>W(t) = e (22)
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= 0) = 0 andW(t — ) = w(s = 0) = w. The latter is nothing N DAY (-b)_
but the fact that long-time regime is Markovian. quantum @r ~
To determine the short-time behavior for the population £ | Z — classical ~ ]

dynamics, we notice the identity

log(klps-1)
\

E°+)=0
V=1kJ/mol

E°=0

k(t=0)=K(t=0)=2V¥h? 23
( ) ( ) ( ) V=1kJ/mol

T
A
v
"

This can be obtained directly by considering the fact that the -1p =~~~ = = ¥ S e e
short-time behavior is identical te&ya(t = 0) (cf. eq 16), =2 (;)._ 0 T (:1)_
regardless whether the reaction is nonadiabatic or not. Together N

with eq B8, and setting,(0) = 1, we obtain A N o
Q L.
~ -3p -
L 21+ K S -~
W=wWt=0)= — K—eq (24) _8' /7 E°=0 E°+\=0
i eq L veootkimol V=0.01kJ/mol

It determines the short-time behavior of the scaled population
dynamics, af\(0) = 0 andA(0) = — W that are implied in eq
21.

The short- and long-time behavior described above can be
summarized as

25 20 15 10 05 00 05 25 20 15 10 05 00 05
log(t /ps) log(t /ps)
Figure 2. Electron-transfer ratie (solid curves), as a function of solvent
longitudinal relaxation time, with 1 = 3 kJ/mol atT = 298 K. Left
panels a and cE° = 0. Right panels b and dE° + A = 0. Upper
oo panels a and bV = 1 kJ/mol. Lower panels ¢ and & = 0.01 kJ/
A(t — 0) ~e |, A(t — oo) ~a WM (25) mol. Included in each panel is also the classical solvation counterpart
ko (dashed curves). Note thater = Al(kgT) = 10726 ps.

Besides the above asymptotic behavidy§) is in general also
influenced by the coherent motion or quantum beat, as long assolvation correlation function assumes real, thayis; 1¢ =
the rate process goes beyond the second order in the transfepAkgT whenkgT/A > 7. 7L It follows |7 — 5¢l/me = 0.5timel
couplingV. As the asymptotic behaviors are concerned, it may z,, with tihe = A/(kgT) denoting thehermal time(zye, = 26 fs

suggest to use the Kubo's line shape functfon for T =298 K). The quantum solvation effect can be significant
At When Tl_ < T[her.
A = exp[—« e " — 1+ W/w)] (26) It is also noticed that the solvation longitudinal relaxation

time 7, is proportional to the solvent viscosit§:!°In this sense,
to analyze the nature of population transfer dynamics. The thek versusr. behavior can be referred to as tlage—viscosity
involving Kubo’s Markovianicity parameter is (cf. eqs 24 and character. This connection suggests that the well-established

25) Kramers’ picture of the solvation effect on chemical reaciéh
be exploited in the following to elucidate the underlying ET
= \7\/1_/2 _ ( 2Keq )llzl @7) reaction mechanism.
T w 1+K,/ hk B. Quantum versus Classical Solvation EffectsAs the

mechanism is concerned, the effect of quantum versus classical
The rate process assumes Markovian or non-Markovian, whensolvation is expected to be most distinct in the following two

k> 1 ork < 1, respectively. scenarios (cf. Figure 1). One is the symmetric ET systEm (

= 0) in which the Fermi resonance enhanced quantum tunneling
IV. Effects of Quantum Solvation: Numerical Results is anticipated. Another is the classical barrierless sysEmH
and Discussions A = 0) where the Marcus’ inversion takes place. Figure 2 depicts

the evaluated rateviscosity characteristics for these two
cenarios of the ET system, at two values of transfer coupling:
= 1 kJ/mol (upper panels) and = 0.01 kJ/mol (lower
panels). The solvation energyis= 3 kJ/mol and temperature
isT =298 K.
C(t) = 7 exp(-t/r)) (28) In the high-viscosity €. > Tihe) regime, the di_fference
between the quantum (solid curve) and the classical (dashed

This is the Debye solvent model, with the longitudinal relaxation Curve) in each panel diminishes (at the qualitative level). This

A. Debye Solvent Model and General RemarksFor the
numerical demonstrations presented hereafter, we consider th
ET system in eq 1 or Figure 1, with the solvation correlation
function in eq 5 being characterized by

time 7. and the pre-exponential param&tep observation is consistent with the physical picture that the high
viscosity (or slow motion) implies a large effective mass and
n = A2k T — ih/7)) (29) thus leads to the classical solvation limit. Observed here is also

the Kramers' falloff behavid#-2? for the adiabatic rates in the

For the above ET system, the analytical expressions for the upper panels. This is the diffusion limit; the higher the solvent
reduced density matrixg(t), and the involving dynamics rate  viscosity is, the more backscattering (or barrier recrossing in
functions, k(s) andK'(s), have all been constructed in ref 25. the classical sense) events there will be. For the nonadiabatic
Note that eq 28 satisfies a semiclassical fluctuatidissipation processes in the lower panels, the backscattering effects are
theorem, valid when the temperature is comparable with or quenched. This accounts for the plateau, observed in the lower
higher than the system’s transition enefgy? This is the only panel (c or d), at which the Marcus’ nonadiabatic ET regime is
approximation involved in this paper. reached, and the rate becomes independent of viscosity.

To elucidate the quantum solvation effect on ET, especially  In the low-viscosity f. < tine) regime, the difference between
as the reaction mechanism is concerned, the rate in the classicafjuantum and classical solvation is at the mechanism level for
solvation limit will also be evaluated as a reference. The classical the two specified types of ET systems. For the symmekEfc (
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(a) classlical

) 0.0} quanltum (b)
= ) 15 -+ p
—_ E%=0  T=298K —~ 5 V=1kJ/mol V=1kJ/mol
S1.0} = ] - : .
< — = A=5kJ/mol q -0.5 = = A=5kJ/mol 2 10} g, -
2\ T e T
20.5- eeea 1 4 1.0 eees 1 p 3 o0s /0/
E%)=0 T=298K
0.0 . .
Se——————4 — .
E°=0 =3kJimol |
~
S1of - = T=250K { -05 — — T=250K - 2
= — 298 — 298 a4
Sos} ---- 350 1.0 c--- 350 =
= >
E°#)=0 A=3kJ/mol S _
00p__, . 4 o4V . 4 o, .4 A=3kJ/mol
4.0 05 00 05 1.0 15 20 -1.0 05 00 05 1.0 15 20
Iog (Tthther) IOQ(TLI Tther) 5 ) 0 6 3
Figure 3. The ratio of quantum versus classical ralélg,, as a function E° (kJ/mol) E® (kJ/mol)
of 7i/tier, With the transfer coupliny = 1 kJ/mol, at various specified  Figure 4. The ratek (left panels) and the classical countergaréright
values ofd andT. panels), as a function @&, with A = 3 kd/mol atT = 298 K. Upper

panels a and bV = 1 kJ/mol. Lower panels ¢ and &/ = 0.01 kJ/
= 0) system [the left panel (a or c) of Figure 2], the quantum mol. The three values of relative relaxation time scalégier = 0.1
rates (solid curves) are apparently Fermi resonance assistedsolid), 1 (dotted), and 10 (dashed), are chosen to represent the low-,
tunneling dominated processes, while the classical rates (dashedtermediate-, and high-viscosity regimes, respectively.

curves) are barrier crossing events. In contrast to kivat ke and shows also an asymmetric character that will be elaborated
in the 7, < Tiher Ff€giMe _for the symmetricK’ = 0) system, soon. Apparently, the quantum rate inversion region is closely
observed is the opposite result kf< ky for the Marcus’ related to the interplay between the barrier crossing and

barrierless E° + 4 = 0) system [the right panel (b or d) of  tunneling processes.

Figure 2]. In the latter case, the classical rate does behave as a |et us start with Figure 4a. Consider first the high-viscosity
barrierless reaction, but the quantum rate exhibits the Kramers'regime, in which, according to the analysis made earlier for
barrier crossing characteristics as a function of viscosity. This Figure 2, the ET process is qualitatively the same as its classical
may indicate that for the ET in the classical barrierless system counterpart. Consequently the dashed curve in Figure 4a has
there is an effective viscosity-dependent barrier that vanishesthe inversion region around the classical barrierless position at
ast, increases. In other words, the barrier Bf (+ 1)%/(44), as E° = —\. Consider now the low-viscosity regime, in which,
depicted in the ET schematics in Figure 1, is the static picture again, according to the analysis earlier, there is always a nonzero
that assumes the solvation potential being fixed. This picture iS barrier for the ET reaction, Covering over the entire range of
valid in the high-viscosity (or slow-modulation) regime, but no  E° including the value of° = —A. This explains the inversion

longer true in the low-viscosity (or fast-modulation) regime. In - pehavior of the solid curve of Figure 4a that is peaked at the
general, the effective solvation potential for the ET reaction is resonant position oE° = 0. As the viscosity increases, the

solvent viscosity dependent. inversion region smoothly shifts from the resonant peak position
To confirm the above observed ET mechanism-related E° = 0 to the classical barrierless position &t = —1.
features, the values dfandT are varied, and the results for To explain the asymmetric property of the quantum inversion

= 1 kJ/mol are summarized in Figure 3. Hekék as functions behavior as depicted in the left panels of Figure 4, recall that
of 7 /tmerare depicted. This figure verifies that'zi,e, does serve k(—E°) ~ K'(E®), the backward reaction rate, ak(E®) < k'-
as a proper measure for the nature of solvation. The reaction(E°) for an endothermicE° > 0) reaction. This leads im-
mechanism turnover occurs at= e for the symmetric ° mediately to the asymmetric property of the solid curve in Figure
= 0) case and classical barrierle&s (- A = 0) ET systems. 4a or c, in which the blue (endothermic) wing falls off faster
In the former case, it is changed from the tunneling to barrier than its red (exothermic) wing. This asymmetry decreases as
crossing, while in the latter case from the barrier crossing to the viscosity increases since the high viscosity regime behaves
barrierless ET rate process. classically.

Let us now consider the Marcus-type inversion behaviors.
Figure 4 presents the Marcus plots, the logarithmic rateklog V- The Adiabatic and Markovian Characters of the
versus reaction endothermiciy, in relation to Figure 2. Three ~ Reaction

values ofzi/zer are chosen as 0.1 (solid curves), 1 (dotted  \ye are now in the position to demonstrate (for the cases of
curves), and 10 (dashed curves) to represent the low-, intermedi-gyantum solvation only) the issues in relation to the nature of
ate-, and high-viscosity regimes, respectively. ET rate process, as addressed in section Ill. Let us start with

Note thatE® = —1 does represent the classical barrierless the adiabatic/nonadiabatic character depicted in Figure 5. Here,
ET systems in all cases in study. All of the classical rates (right each individuak (thin curves), as function af , is decomposed
panels, Figure 4b and d) have inversions occurririg’at —4. into its adiabatids and nonadiabatikya components (eq 18).
Moreover, all of them are symmetric abokit = —1. The These two components are given in the upper panel (Figure 5a
Marcus’ parabolic character is recovered in the high-viscosity, or b) and the lower panel (Figure 5c or d), respectively. The
nonadiabatic, and classical limit and is practically the dashed |eft panels are for th&€ = 0 system (Figure 5a and c), while
curve in Figure 4d. the right panels are for the° + 1 = 0 system (Figure 5b and

The quantum rates depicted in the left panels (Figure 4a andd). In each panel, four values of transfer coupling are used:
c) also show inversion behavior. However, the observed V/(kJ/mol)= 0.25 (dotted), 0.5 (dashed), 1 (solid), and 2 (dash-
inversion region depends sensitively on the solvent viscosity dotted).
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log (T /Tiher) 10g(T /Ter) =
Figure 5. The decomposition of ratie(thin curves), following eq 18, 1 i
into the adiabati&, (upper panels) and nonadiabatig (lower panels) V=1kJimol
components, and plotted as functiong@f e, with A = 3 kJ/mol and
T = 298K. Left panels a and cE® = 0. Right panels b and dE° + 0
A = 0. Each panel involves four values of transfer coupling strength: [ ] 1 1 1 ] .
VI/(kJd/mol)= 0.25 (dotted), 0.5 (dashed), 1 (solid), and 2 (dash-dotted), 10 -05 0.0 0.5 1.0 1.5 2.0
respectively. log(z, /)

Figure 7. The Markovianicity parameter (eq 27), as a function of
Tu/Tier atV = 1 (solid) and 0.01 kJ/mol (dashed), with= 3 kJ/mol
andT = 298 K, for (@)E° = 0 and (b)E®° + A = 0.

abnormality here may be accounted for, at least partially, by
the associated tunneling rate process, as elaborated below.
The abnormality in the adiabaticity parameter is most striking
around the symmetri&® ~ 0) system in the low-viscosityr(/
Tiner = 0.1) regime. This is a tunneling dominant scenario, as
discussed in section IV. Considered here is also the strong
transfer coupling case of = 1 kJ/mol. Thus, the observed
abnormality is most likely caused by the coherent ET reaction.
The argument fok < kya, due to the backscattering-induced

8 ] -4 2 0 2 4 . : ;
E° (kJ/mol) total rate reduction, may no longer be valid. Moreover, we will
Figure 6. The adiabaticitykua/ks as function ofE®, for 7/zier = 10, see soon that the ET reaction in the observed abnormal region
1, and 0.1. The inverse of /tperis also used to scale the individual is non-Markovian, leading to the rate constant description
adiabaticity curve:V = 1 kJ/mol,4 = 3 kJ/mol, andT = 298K. inadequate at all; see Figure 10 and the comments there.
It is observed that, in the low-viscosity (< Tne) regime, We now turn to the Markovian/non-Markovian nature of the

the reaction is nonadiabatic; see Figure 5c and d. This ET reaction. The key quantity here is the Markovianicity

observation may be understood as follows. In the low-viscosity Parameterc (eq 27). It involves the reaction rateand the

regime, the solvent fluctuates fast and stabilizes the ET systemequilibrium constanKeq The detailed knowledge on hoMeq

in the acceptor state before backscattering takes place. As adeépends on the Debye solvent parameters can be found in ref

result, the reaction is nonadiabatic in the low-viscosity regime, 25- For the rate in the low-viscosity regines ka, as depicted

at least for the range of transfer coupling strength consideredin the lower panels of Figure 5, resulting ke 2h~V2T/(E°.

here. The above picture is also consistent with the observation™ I'?), with I' = 2h=17kgTz,_ for the Debye solvent model in

that in the diffusion €. > tie) limit, where k O 1/r, the  Study; see eq 16 and eq 28. Thus

reaction assumes an adiabatic rate process; see Figure 5a and

b. kK ~h kT /V; whenE® =0 andr < 1y, (30)
Figure 6 presents the adiabaticity parametkyga/ka, as a

function of reaction endothermicitl®, atV = 1 kJ/mol, with This equation can be used to estimate the Markovianicity

the three specified values af/tiner= 0.1, 1, and 10. The inverse  parameter for a symmetric ET syste (= 0, implying also

of these values is also used individually to scale the corre- Keq= 1) in the low-viscosity regime.

sponding adiabaticity curves, as depicted in Figure 6. The Figure 7 shows the evaluated Markovianicityeq 27) as

adiabaticity curve in the high-viscosity (tmer = 10) regime function of 7 /i, for the same ET systems as Figure 2 (without

looks all normal, being of the minimum about where the rate the classical solvation parts). F& + A = 0 (lower panel),

maximum is; compare the dashed curve in Figure 4a. The fasterthe ET rate process behaves Markoviar>( 1), even for the

the ET passage, the less adiabatic (or more surface-hoppingkstrong transfer coupling(= 1 kJ/mol) case. Apparently, the

the reaction would be. This feature remains largely unchangednon-Markovian £ < 1) rate process is most likely to occur in

in the intermediate-viscosityr(/Tiher = 1) case, except for that  the Fermi resonance tunneling regime, whigte= 0 andr,. <

the adiabaticity minimum now is slightlyegatve, or k > kya. Tiner, With the approximated expression«given in eq 30. The

It contradicts with the argument made earlier for eq 18. The above comments are further confirmed by Figure 8, in which
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Figure 8. The Markovianicity parameter (eq 27) as a function of
E°, with 4 = 3 kd/mol andl = 298 K, atr, /ziner= 0.1 (solid), 1 (dotted),
and 10 (dashed): (& = 1 kJ/mol and (b)V = 0.01 kJ/mol.
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Figure 9. The scaled populatioA(t) (eq 19) evolution, evaluated at
Tu/timer = 0.1 (upper panels), 1 (middle panels), and 10 (lower panels).
Left panels: E° = 0. Right panels:E° + 1 = 0. Here,V = 1 kd/mol,
A = 3 kJ/mol, andT = 298 K. Included in each panel are also the
corresponding Kubo'd\k(t) (eq 26; dashed) and Markoviakar(t)
(dotted). The inset in each panel is tie= 0.01 kJ/mol counterpart,
where all of these three curves are identical.

the Markovianicityk is plotted as function oE®, at the three
representing values af /tiner

Figure 9 depicts the scaled population evoluti&(t) (eq 19),
for the ET systems oE° = O (three left panels) anB°® + 1 =

0 (three right panels). The upper (a and b), middle (c and d),

0, V=1kJ/mol, 1 /1

L “ther

=0.1

J°r
L - = AK(t)
-t 'AMar(t)
1E N 1 N 1 N 1 N 1 N .
0.0 0.1 0.2 0.3 0.4 0.5
time (ps)

Figure 10. The amplified portion of Figure 9a. The scaled population
evolution A(t) (solid), Kubo’sAk(t) (dashed), and Markoviafimar(t)
(dotted).

k'. As the envelop of population evolution is concerned, the
significant non-Markovian nature is only observed in Figure
9a, with the relevant part enlarged in Figure 10. This is a
symmetric ET system in the strong transfét € 1 kJ/mol)
coupling and low-viscosityt( /tier = 0.1) regime. The corre-
sponding Markovianicity value«= 0.3) is found to agree well
with the aforementioned approximate expression of eq 30.

VI. Concluding Remarks

The quantum solvation, adiabatic/nonadiabatic, and Mark-
ovian/non-Markovian characters are important issues in under-
standing chemical reaction, including ET in solution. Here, we
have revisited these issues in a unified and transparent manner,
with the aid of the Debye solvent model (eq 28) that supports
an analytical solution without additional approximatiéA3.he
physical picture discussed in this work is however rather general.

We have presented a full account for the effect of quantum
solvation on the ET rate process (section V). Not just can it
change a barrier crossing event to tunneling, but the quantum
nature of solvent can also lead a classical barrierless reaction
to an effective barrier crossing rate process. The resulting rate
may differ from its classical counterpart by orders of magnitude.
The quantum solvation is found to be distinctly important in
low-viscosity (fast-modulation) solvents. For a realistic solvent
that consists of multiple correlation time scales, only the slow-
modulation solvent modes can be treated classically.

The adiabatie-nonadiabatic decomposition of rate (eq 18)
is practically useful, provided that the total rakecan be
experimentally measured and the nonadiabatic kgtecan be
readily evaluated via eq 16. The adiabaticity paramkjgfka
= kna/k — 1, as inferred from eq 18, can then be used to discuss
the adiabatic/nonadiabatic nature of the reaction. Interestingly,
a negative adiabaticity may indicate there is a certain degree of
guantum tunneling taking place (cf. Figure 6 and its comments).

We have also proposed to use the Markovianicity parameter
k (eq 27), based on the Kubo’s motional narrowing function,
for analyzing the Markovian/non-Markovian nature of the

and lower (e and f) panels are of the specified values of electron-transfer rate process. Note that the solvent relaxation

viscosity, 7. /timer = 0.1, 1, and 10, respectively. The transfer
coupling strength i¥ = 1 kJ/mol. The weak transfer coupling

time scale is typically in the order of picoseconds, whilg,
for room temperature is 26 fs. This amounts to the high-viscosity

(V = 0.01 kJ/mol) counterparts, as depicted in the insets of the or slow-modulation regime of present studies on ET. The

individual panels, are shown all Markovian, with> 1 for
their values of Markovianicity (cf. Figures 7 and 8). Included
for comparison in each panel are also the Kul&t) (eq 26)
and Markoviam\yar = exp(—wt) counterparts, wherne = k +

resulting Markovianicity parameter, as depicted in Figures 7
and 8, is typically« > 1 for the aforementioned typical cases.
This may account for why most experimental observations do
support the Markoviank(> 1) rate constant description.
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We have pointed out that a non-Markovian rate process is Using the second-cumulant expansion expression, which is exact
most likely to occur in the symmetric ET system at the fast- for the Gaussian solvation process, results in
modulation regime. It is just the opposite to the spectroscopic
case. According to the motional narrowing picture, the fast git) =i(E° + )t + ft dr ff dr'C(7') (A6)
modulation leads to a Markovian spectroscopic proée&he 0 0
above seemingly counterintuitive phenomenon in relation to the W

. e have then

nature of the rate process may be understood as follows. First
of all, the motional narrowing picture is applicable to the ~{1}
spectrum of rate kernel, rather than the population evolution SPba
itself. The narrower the rate kernel spectrum is, the less
Markovian the rate process would be. However, this is not the
complete picture. The peak position of the rate kernel spectrum, o)
in relation to where rate constant is evaluated, should also be o (s) = 14(s) (A8)

considered. It shifts from the classical Marcus’ inversion position Together withy(® = 0, eq 15a to the lowest order redda(s)

at E° = —1 in the slow-modulation limit, to the quantum
. — i . - . = (2V¥h?)Re)(s), whereJ(s) denotes the Laplace transform of
resonant tunneling &° = 0 in the fast-modulation (or motional expl—g()] (cf. eq A7). We obtain therefore eq 16.

narrowing) regime (see Figure 4, left panels). Equation 30 that
is achieved aE°® = 0 can be considered as the lower bound of
the Markovianicity « for the ET rate process in the fast-
modulation regime. In this regime, the population transfer may  Let us first present some basic relations in connection to the
also exhibit the quantum beat feature that is non-Markovian in Laplace transform, defined far=0 as

a strict sense. We shall investigate these complex cases

elsewhere. f(9) = L{f())} = /. dte (1) (B1)

(s) = —iVL{exp[-g®)]} = —iVI(9) (A7)

Together with eq A3, we obtain

Appendix B: Some Useful Relations for Rates
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of China (NCET-05-0546). L{f(1)} = sf(s) — f(0) (B3)

L{f(t = f(eo) — f(0), we obtain immediatel
In this appendix, we shall treat the nonadiabatic rate problem, {f(O}e=0 = () = 1(0) y

on the basis of the standard perturbation theory on the reduced f(0) = lim [sf(s)], f(c) = lim [sf(s)] (B4)
density matrixo(t), assuming that the transfer coupling term of S s-0
eq 1 is weak. At the initial timé= 0, the total composite density
operator ispr(0) = pzlaldl. Consider eq 8 for the coherence
components, which for the two-level ET system reads explicitly
as (settingh = 1 in this appendix)

We are now in the position to derive some useful relations
between the non-Markovian rate variables appearing in section
[I. From eq 11 andP4(t) + Py(t) = 1, we have

P,(0) + K (s)/s

WP = —IV(P, — P) — 2P, — ypi (A1) p(=-—2t = BS
b a ™ Pb) 2R~ Ve = ke (83)
Herea = s+ i(E° + 1) + x, and
From egs 19 and 22, we have
x=M ., Y=I,, z=II (A2) .
baba baab babb ) Pa(S) . Pa(OO)/S 1
Combining the initial conditionP4(t = 0) = 1 and the A(g) = P_(0) — P.(w) = s+ W (B6)
. . 2 . . {00 _ a a
perturbative action o¥ together results immediately ﬁ’frl =
1/s and The above two equations lead to
0= P = pf20 = % = (0 = yAH = 2% © S[PLOK(S) — Py (0K (9] @)
w(s) = -
Therefore, the lowest order in eq Al reads S[P(0) = Py(e0)] = Py(2)k(s) + Py(0)K(s)
oo 5&;} = —iV/s (A3) Together with the first identity of eq B4, we have
On the other hand, the standard first-order perturbative expres- Wt = 0) = Pa(0)k(t = 0) — P,(OK(t = 0) (B8)
sion is P4(0) = Py()
p&)(t) =iV fot dr exp[—g(7)] (A4) The above relation will be used in deriving eq 24.
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