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In this work, we revisit the electron-transfer rate theory, with particular interests in the distinct quantum
solvation effect and the characterizations of adiabatic/nonadiabatic and Markovian/non-Markovian rate
processes. We first present a full account for the quantum solvation effect on the electron transfer in Debye
solvents, addressed previously inJ. Theor. Comput. Chem.2006, 5, 685. Distinct reaction mechanisms,
including the quantum solvation-induced transitions from barrier crossing to tunneling and from barrierless
to quantum barrier crossing rate processes, are shown in the fast modulation or low viscosity regime. This
regime is also found in favor of nonadiabatic rate processes. We further propose to use Kubo’s motional
narrowing line shape function to describe the Markovian character of the reaction. It is found that a non-
Markovian rate process is most likely to occur in a symmetric system in the fast modulation regime, where
the electron transfer is dominant by tunneling due to the Fermi resonance.

I. Introduction

A. Prelude. Electron transfer (ET) is the simplest reaction
system but plays a pivotal role in many chemical and biological
processes. The field of ET research has grown enormously since
the 1950s.1-21 The standard ET system-bath model Hamiltonian
reads

Here, E° denotes the reaction endothermicity,V the transfer
coupling matrix element, andha (hb) the solvent Hamiltonian
for the ET system in the donor (acceptor) state. The system is
initially in the donor|a〉 site, with the solvent (bath) equilibrium
density matrixFa

eq ∝ e-ha/(kBT) at the specified temperatureT.
The ET system of eq 1 can be treated as a spin-boson problem

in the context of quantum dissipation. We have recently
constructed a general theory of quantum dissipation,22-24 which
results in an analytical solution to the ET dynamics in a Debye
(solvent) dissipation.25,26It is noticed that the exact construction
leads always to a generalized rate equation:25-27

Here, k̂(t) and k̂′(t) denote the forward and backward rate
memory kernels. On the other hand, one often finds in practice
that the simple kinetic theory, with a Markovian rate constant
description, can well describe the observed rate process. The
resulting reactant populationPa(t) decays exponentially toward
its equilibrium value at a given temperature. Note that formally
the rate constant is just the integrated rate kernel over time. Is
there any quantitative justification for the Markovian rate

processes being often observed experimentally? In this work,
we try to address this issue, along with the quantum solvation
effect and the adiabatic versus nonadiabatic nature of ET rate
processes.

B. Background.Previous work on ET theory focuses mainly
on the rate constant description. Consider Figure 1, the
schematics of the simple donor-acceptor ET system of eq 1.
Here, the relevant (macroscopic) solvent potential surfacesVa

andVb are plotted as the functions of solvation coordinateU ≡
hb - ha. The solvation energy for the ET from the donor|a〉 to
the acceptor|b〉 site is given by1-3

The second identity here defines the notation〈‚‚‚〉 for the bath
ensemble average, where the trace runs over all the solvent
(bath) degrees of freedom. At the crossing (U + E° ) 0) point,
Va ) Vb ) (E° + λ)2/(4λ). It is the celebrated Marcus’ ET
reaction barrier height.1-3 Thus, Figure 1 also summarizes the
Marcus’ nonadiabatic rate expression

This rate (constant) can be derived readily from eq 1, by using
the classical or static Franck-Condon approximation, followed
by the classical fluctuation-dissipation theorem,〈U2〉 - 〈U〉2

) 2kBTλ. It does not consider thedynamicsolvation effect,
which is characterized by the relaxation time and also associated
with the viscosity of the solvent.11-16 Such effect was first
studied by Kramers in his classical Fokker-Planck equation
approach to the rate theory of isomerization reaction.28 The
resulting rate shows the celebrated turnover behavior that the
rate has a maximum in an intermediate viscosity region.28,29

This clearly demonstrates the dual role of solvent on reaction
rate. Note that, in the Kramers’ rate theory, the reaction system
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HT ) ha|a〉〈a| + (hb + E°)|b〉〈b| + V(|a〉〈b| + |b〉〈a|) (1)

Ṗa(t) ) - ∫0

t
dτ k̂(t - τ)Pa(τ) +∫0

t
dτ k̂′(t - τ)Pb(τ) (2)

λ ≡ trB(UFa
eq) ≡ 〈U〉 (3)

kNA ) V2/p

xλkBT/π
exp[-

(E° + λ)2

4λkBT ] (4)
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is treated as a Brownian particle moving on a single adiabatic
double-well potential surface.

The dynamic solvation on nonadiabatic ET has been incor-
porated in the quantum extension of Marcus’ theory, formulated
via the Fermi golden rule.18-21 The solvation coordinate is now
a time-dependent stochastic operator,U(t) ≡ eihat/pUe-ihat/p, and
assumed to follow the Gaussian statistics. Thus, the dynamic
solvation is completely characterized by the correlation function

The Fermi golden rule formalism is valid for an arbitrary form
of the solvation correlation function. But like the Marcus’ theory,
it is restricted in the second-order transfer coupling regime. The
resulting rate does not show the Kramers’ falloff behavior28,29

that involves the barrier recrossing and thus depends on higher-
order transfer coupling. The improved approach has been
proposed, on the basis of the fourth-order perturbation theory,
followed by certain resummation schemes.8-17,30The resulting
rate does support a smooth transition between nonadiabatic and
adiabatic ET reaction, recovering properly the Kramers’ turnover
behavior.28,29

In this work, we adopt the reduced density matrix dynamics
approach that is closely related to our recent development of
quantum dissipation theory.22-24 With the aid of the analytical
expression for the nonperturbative and non-Markovian ET
rate,25,26we will elaborate in detail the quantum solvation effects
in both the adiabatic and nonadiabatic reaction regimes and
further investigate their relations to the Markovian versus non-
Markovian nature of ET reaction kinetics.

The remainder of this paper is organized as follows. Section
II reviews the generalized kinetic rate theory, constructed readily
via the reduced density matrix dynamics. In section III, we
decompose the total rate into its adiabatic and nonadiabatic
components and also analyze the Markovian versus non-
Markovian nature of population transfer dynamics. We propose
to use the Kubo’s motional narrowing function, originally used
in the context of optical spectroscopy,31,32 to characterize the
Markovian character of the ET rate process. Section IV presents
a full account of the effect of quantum versus classical solvation
on some representative ET reaction systems. Section V analyzes
the population transfer dynamics, with the focus on their
adiabatic/nonadiabatic and Markovian/non-Markovian charac-
ters. Finally, section VI concludes the paper.

II. Non-Markovian Rates: Theory

A. Generalized Rate Theory and Dissipation.Let us define
the dynamic rates via the evolution of reduced system density

matrix F. In the absence of time-dependent external field, the
generalized quantum master equation reads

whereLF ≡ p-1[H, F], with H ≡ 〈HT〉 being the reduced system
Hamiltonian;Π̂(t - τ) denotes the dissipation kernel. Note that
eq 6 is formally exact; in fact, the involving nonperturbative
Π̂(t) can be generally expressed in terms of continued fraction
formalism.23,33,34

To obtain the dynamic rates, we shall eliminate the coherent
componentsFjk; j * k, from eq 6, and retain the populations
Pj(t) ≡ Fjj(t) only. To do that, let us recast eq 6 in its Laplace
frequency-domain resolution

and then arrange it into the block matrix form for the population
and coherence vectors,P̃ ) {F̃jj} and C̃ ) {F̃jk; j * k}, with
C(t ) 0) ) 0, respectively. We have

with the transfer matrices, TPP, TPC, TCP, and TCC, arising from
the corresponding rearrangement ofiL + Π(s). Eliminating the
coherent component leads to

or, equivalently

The involving rate resolution matrix is obtained as

Its element Kjk(s) resolves the state-to-state dynamic rate
memory kernel Kˆ jk(t). The rate matrix satisfies the relation∑j

K jk ) 0, as inferred from the population conservation, TrF )
∑j Pj ) constant.

B. Generalized Rate Theory in the Two-State System.For
the two-state ET system (cf. eq 1 and Figure 1) of the present
study, only a single dynamic rate equation is independent. That
is eq 2, which reads in the Laplace domain as

Here,k(s) ≡ L{k̂(t)} ) -Kaa(s) andk′(s) ≡ L{k̂′(t)} ) Kab(s)
are the forward and backward rate resolutions, respectively. The
involving transfer matrices for the simple ET system of eq 1
have all been identified; see the eq 32 of ref 25:

Figure 1. Schematics of solvent potentialsVa andVb for the ET system
in the donor and acceptor states, respectively, as functions of the
solvation coordinateU ≡ hb - ha ) Vb - Va - E°, with E° being the
ET endothermicity andλ ) 〈U〉 the solvation energy. The classical
barrierless system is that ofE° + λ ) 0.

C(t - τ) ) 〈[U(t) - λ][U(τ) - λ]〉 (5)

F̆(t) ) - iLF(t) - ∫0

t
dτ Π̂(t - τ)F(τ) (6)

sF̃(s) - F(0) ) -[iL + Π(s)]F̃(s) (7)

sP̃(s) - P(0) ) -TPP(s)P̃(s) - TPC(s)C̃(s) (8a)

sC̃(s) ) -TCP(s)P̃(s) - TCC(s)C̃(s) (8b)

sP̃(s) - P(0) ) K(s)P̃(s) (9a)

Ṗj(t) ) ∑
k
∫0

t
dτ K̂ jk(t - τ)Pk(τ) (9b)

K(s) ≡ ∫0

∞
dte-stK̂(t) ) TPC(s + TCC)-1TCP - TPP (10)

sP̃a(s) - Pa(t ) 0) ) -k(s)P̃a(s) + k′(s)P̃b(s) (11)

TPP) 0, TPC ) iV
p [- 1 1

1 - 1] (12a)

TCP ) [- iV/p z* + iV/p
iV/p z - iV/p ] (12b)

TCC ) [x* - i(E° + λ)/p y*
y x + i(E° + λ)/p ] (12c)
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Here

and their complex conjugates∏jj ′,kk′
/ ) ∏j′j,k′k are the only

nonzero elements of theΠ-tensor. Denote also

The final expressions for the rate resolutions are then25

and

The involving parameters, defined in eq 13, can in principle be
evaluated in terms of continued fraction formalism of the
nonperturbative dynamics of reduced density matrix.23,33,34In
particular, the continued fraction expressions of these parameters
have been solved analytically for the Debye solvent model,
where the solvation correlation assumes a single exponential
form.25

III. Nature of Rate Processes: Adiabatic versus
Nonadiabatic and Markovian versus non-Markovian

A. Adiabatic-Nonadiabatic Rate Decomposition.It is
noticed that the ET in the short-time (t < p/V) regime is always
nonadiabatic, ork ∝ V2. This fact can be inferred from the
observation that the backscattering events, responsible by the
higher-order transfer coupling, are yet to occur. In Appendix
A, we solve eqs 8 and 12 in the weak transfer coupling limit
and obtain the nonadiabatic counterpart of eq 15

with

The correspondingkNA(s ) 0) is the well-established quantum
nonadiabatic rate expression.8-21,30The Marcus’ expression, eq
4, can be obtained via settingC(t) ≈ C(0) ) 2λkBT that amounts
to the static (slow-modulation) approximation, followed by the
classical fluctuation-dissipation theorem.

Consider now the long-time regime, involving only the
integrated rate kernel, that is, the rate constantk ≡ k(s ) 0) or
k′ ≡ k′(s ) 0). Hereafter, rate constant will be referred in short
as rate if it causes no confusion. For the later use, denote also
the reaction equilibrium constant

It is noticed thatk e kNA is expected to hold in general; see
Figure 6 and its related comments, especially on the case of
exception. This inequality may be inferred from the fact that
the totalk contains the backscattering contributions, while the
nonadiabatickNA does not. The decomposition of the total rate
into its nonadiabatic and adiabatic components may therefore

be introduced as11-16

As k andkNA can be evaluated via eqs 15a and 16, respectively,
with s ) 0, the above equation can in fact be considered as the
working definition of adiabatickA. We shall show later thatkA

is relatively very insensitive (compared tokNA) to the transfer
coupling strengthV variable (cf. Figure 5). Therefore, it can be
practically used to describe the adiabatic rate process that
involves only the ground solvation surface via the diagonaliza-
tion of eq 1. The ratiokNA/kA can be considered as the
adiabaticity parameter. The ET reaction is adiabatic whenkNA/
kA . 1 and nonadiabatic whenkNA/kA , 1.

B. Characterization of Markovian versus Non-Markovian
Rate Processes.We now turn to the Markovian versus non-
Markovian nature of the reaction. The general theory of rate
presented in the previous section assumes always non-Mark-
ovian. On the other hand, the experimental observations appear
often Markovian. It is desirable to have a working criterion on
the nature of ET kinetics. In contact with experiments, let us
consider the scaled population

It does not depend on the state index due to the identity ofPa-
(t) + Pb(t) ) 1. The simple (Markovian) kinetic rate equation,
Ṗa(t) ) - kPa(t) + k′Pb(t), can be represented in terms of the
scaled population as

The involving decay constant,w ) k + k′, could be measured
readily if the rate does behave like Markovian. The forward
and backward reaction rate constants can then be evaluated as
k ) wKeq/(1 + Keq) andk′ ) w/(1 + Keq), respectively.

A non-Markovian rate process can be described by thekinetic
rate memory kernelŵ(t - τ) via

In other words, one can deduce the rate kernel from the
population evolution asŵ(t) ) L-1{[1 - s∆̃(s)]/∆̃(s)}. Here
∆̃(s) denotes the Laplace transform of∆(t), while L-1{‚} the
inverse Laplace transform, that is

In Appendix B, we present the explicit expression ofw(s) in
terms ofk(s) and k′(s); see eq B7, together with some useful
identities in relation to the Laplace transform. Unlikew(s), the
population evolution alone is in general not sufficient to
determine bothk(s) andk′(s).

Equivalent to the kinetic rate kernelŵ(t) defined in eq 21,
one may also define the time-local rateW(t) via ∆̇(t) ) -W(t)∆-
(t). Note that, while the kernelŵ(t) is always well behaved, its
time-local counterpart,W(t) ) -∆̇(t)/∆(t), may diverge at
certain time, sayt′, due to the possibility of∆(t′) ) 0 in an
underdamped non-Markovian rate process. At timet′, the
effective kinetics reduces to the zero-order rate process since
W(t′)∆(t′) remains finite. Moreover, eq 21 implies also thatW(t

x ≡ Πba,ba, y ≡ Πba,ab, z≡ Πba,bb (13)

R(s) ≡ s + x(s) + (i/p)(E° + λ) (14)

k(s) ) 2|V|2
p2

Re{ R(s) + y(s)

|R(s)|2 - |y(s)|2} (15a)

k′(s) ) 2|V|2
p2

Re{[R(s) + y(s)][1 - ipz*(s)/V]

|R(s)|2 - |y(s)|2 }
(15b)

kNA(s) ) 2V2

p2
Re∫0

∞
dt exp[ -st - g(t)] (16a)

g(t) ) i
p

(E° + λ)t + 1

p2 ∫0

t
dτ ∫0

τ
dτ′C(τ′) (16b)

Keq )
Pb(∞)

Pa(∞)
)

k(s ) 0)

k′(s ) 0)
≡ k

k′ (17)

1
k

) 1
kNA

+ 1
kA

(18)

∆(t) ≡ Pj(t) - Pj(∞)

Pj(0) - Pj(∞)
; j ) a, b (19)

∆̇Mar(t) ) -w∆Mar(t) (20)

∆̇(t) ≡ - ∫0

t
dτ ŵ(t - τ)∆(τ) (21)

w(s) ≡ L{ŵ(t)} ≡ ∫0

∞
dte-stŵ(t) )

1 - s∆̃(s)

∆̃(s)
(22)
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) 0) ) 0 andW(t f ∞) ) w(s ) 0) ≡ w. The latter is nothing
but the fact that long-time regime is Markovian.

To determine the short-time behavior for the population
dynamics, we notice the identity

This can be obtained directly by considering the fact that the
short-time behavior is identical tok̂NA(t ) 0) (cf. eq 16),
regardless whether the reaction is nonadiabatic or not. Together
with eq B8, and settingPa(0) ) 1, we obtain

It determines the short-time behavior of the scaled population
dynamics, as∆̇(0) ) 0 and∆̈(0) ) - ŵ that are implied in eq
21.

The short- and long-time behavior described above can be
summarized as

Besides the above asymptotic behaviors,∆(t) is in general also
influenced by the coherent motion or quantum beat, as long as
the rate process goes beyond the second order in the transfer
couplingV. As the asymptotic behaviors are concerned, it may
suggest to use the Kubo’s line shape function32

to analyze the nature of population transfer dynamics. The
involving Kubo’s Markovianicity parameter is (cf. eqs 24 and
25)

The rate process assumes Markovian or non-Markovian, when
κ > 1 or κ < 1, respectively.

IV. Effects of Quantum Solvation: Numerical Results
and Discussions

A. Debye Solvent Model and General Remarks.For the
numerical demonstrations presented hereafter, we consider the
ET system in eq 1 or Figure 1, with the solvation correlation
function in eq 5 being characterized by

This is the Debye solvent model, with the longitudinal relaxation
time τL and the pre-exponential parameter33,25

For the above ET system, the analytical expressions for the
reduced density matrix,F(t), and the involving dynamics rate
functions,k(s) and k′(s), have all been constructed in ref 25.
Note that eq 28 satisfies a semiclassical fluctuation-dissipation
theorem, valid when the temperature is comparable with or
higher than the system’s transition energy.25,34This is the only
approximation involved in this paper.

To elucidate the quantum solvation effect on ET, especially
as the reaction mechanism is concerned, the rate in the classical
solvation limit will also be evaluated as a reference. The classical

solvation correlation function assumes real, that is,η f ηcl )
2λkBT whenkBT/p . τL

-1. It follows |η - ηcl|/ηcl ) 0.5τther/
τL, with τther ≡ p/(kBT) denoting thethermal time(τther ) 26 fs
for T ) 298 K). The quantum solvation effect can be significant
whenτL < τther.

It is also noticed that the solvation longitudinal relaxation
timeτL is proportional to the solvent viscosity.14,15In this sense,
thek versusτL behavior can be referred to as therate-Viscosity
character. This connection suggests that the well-established
Kramers’ picture of the solvation effect on chemical reaction28,29

be exploited in the following to elucidate the underlying ET
reaction mechanism.

B. Quantum versus Classical Solvation Effects.As the
mechanism is concerned, the effect of quantum versus classical
solvation is expected to be most distinct in the following two
scenarios (cf. Figure 1). One is the symmetric ET system (E°
) 0) in which the Fermi resonance enhanced quantum tunneling
is anticipated. Another is the classical barrierless system (E° +
λ ) 0) where the Marcus’ inversion takes place. Figure 2 depicts
the evaluated rate-viscosity characteristics for these two
scenarios of the ET system, at two values of transfer coupling:
V ) 1 kJ/mol (upper panels) andV ) 0.01 kJ/mol (lower
panels). The solvation energy isλ ) 3 kJ/mol and temperature
is T ) 298 K.

In the high-viscosity (τL > τther) regime, the difference
between the quantum (solid curve) and the classical (dashed
curve) in each panel diminishes (at the qualitative level). This
observation is consistent with the physical picture that the high
viscosity (or slow motion) implies a large effective mass and
thus leads to the classical solvation limit. Observed here is also
the Kramers’ falloff behavior28,29 for the adiabatic rates in the
upper panels. This is the diffusion limit; the higher the solvent
viscosity is, the more backscattering (or barrier recrossing in
the classical sense) events there will be. For the nonadiabatic
processes in the lower panels, the backscattering effects are
quenched. This accounts for the plateau, observed in the lower
panel (c or d), at which the Marcus’ nonadiabatic ET regime is
reached, and the rate becomes independent of viscosity.

In the low-viscosity (τL < τther) regime, the difference between
quantum and classical solvation is at the mechanism level for
the two specified types of ET systems. For the symmetric (E°

Figure 2. Electron-transfer ratek (solid curves), as a function of solvent
longitudinal relaxation timeτL, with λ ) 3 kJ/mol atT ) 298 K. Left
panels a and c:E° ) 0. Right panels b and d:E° + λ ) 0. Upper
panels a and b:V ) 1 kJ/mol. Lower panels c and d:V ) 0.01 kJ/
mol. Included in each panel is also the classical solvation counterpart
kcl (dashed curves). Note thatτther ≡ p/(kBT) ) 10-1.6 ps.

k̂(t ) 0) ) k̂′(t ) 0) ) 2V2/p2 (23)

ŵ ≡ ŵ(t ) 0) ) 2V2

p2

1 + Keq

Keq
(24)

∆(t f 0) ≈ e-ŵt2/2
, ∆(t f ∞) ≈ e-wt (25)

∆K(t) ) exp[ -κ
-2(e- ŵt/w

- 1 + ŵt/w)] (26)

κ ≡ ŵ1/2

w
) ( 2Keq

1 + Keq
)1/2 V

pk
(27)

C(t) ) η exp(-t/τL) (28)

η ) λ(2kBT - ip/τL) (29)
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) 0) system [the left panel (a or c) of Figure 2], the quantum
rates (solid curves) are apparently Fermi resonance assisted
tunneling dominated processes, while the classical rates (dashed
curves) are barrier crossing events. In contrast to thatk . kcl

in the τL < τther regime for the symmetric (E° ) 0) system,
observed is the opposite result ofk , kcl for the Marcus’
barrierless (E° + λ ) 0) system [the right panel (b or d) of
Figure 2]. In the latter case, the classical rate does behave as a
barrierless reaction, but the quantum rate exhibits the Kramers’
barrier crossing characteristics as a function of viscosity. This
may indicate that for the ET in the classical barrierless system
there is an effective viscosity-dependent barrier that vanishes
asτL increases. In other words, the barrier of (E° + λ)2/(4λ), as
depicted in the ET schematics in Figure 1, is the static picture
that assumes the solvation potential being fixed. This picture is
valid in the high-viscosity (or slow-modulation) regime, but no
longer true in the low-viscosity (or fast-modulation) regime. In
general, the effective solvation potential for the ET reaction is
solvent viscosity dependent.

To confirm the above observed ET mechanism-related
features, the values ofλ andT are varied, and the results forV
) 1 kJ/mol are summarized in Figure 3. Here,k/kcl as functions
of τL/τtherare depicted. This figure verifies thatτL/τtherdoes serve
as a proper measure for the nature of solvation. The reaction
mechanism turnover occurs atτL ) τther for the symmetric (E°
) 0) case and classical barrierless (E° + λ ) 0) ET systems.
In the former case, it is changed from the tunneling to barrier
crossing, while in the latter case from the barrier crossing to
barrierless ET rate process.

Let us now consider the Marcus-type inversion behaviors.
Figure 4 presents the Marcus plots, the logarithmic rate logk
versus reaction endothermicityE°, in relation to Figure 2. Three
values ofτL/τther are chosen as 0.1 (solid curves), 1 (dotted
curves), and 10 (dashed curves) to represent the low-, intermedi-
ate-, and high-viscosity regimes, respectively.

Note thatE° ) -λ does represent the classical barrierless
ET systems in all cases in study. All of the classical rates (right
panels, Figure 4b and d) have inversions occurring atE° ) -λ.
Moreover, all of them are symmetric aboutE° ) -λ. The
Marcus’ parabolic character is recovered in the high-viscosity,
nonadiabatic, and classical limit and is practically the dashed
curve in Figure 4d.

The quantum rates depicted in the left panels (Figure 4a and
c) also show inversion behavior. However, the observed
inversion region depends sensitively on the solvent viscosity

and shows also an asymmetric character that will be elaborated
soon. Apparently, the quantum rate inversion region is closely
related to the interplay between the barrier crossing and
tunneling processes.

Let us start with Figure 4a. Consider first the high-viscosity
regime, in which, according to the analysis made earlier for
Figure 2, the ET process is qualitatively the same as its classical
counterpart. Consequently the dashed curve in Figure 4a has
the inversion region around the classical barrierless position at
E° ) -λ. Consider now the low-viscosity regime, in which,
again, according to the analysis earlier, there is always a nonzero
barrier for the ET reaction, covering over the entire range of
E° including the value ofE° ) -λ. This explains the inversion
behavior of the solid curve of Figure 4a that is peaked at the
resonant position ofE° ) 0. As the viscosity increases, the
inversion region smoothly shifts from the resonant peak position
E° ) 0 to the classical barrierless position ofE° ) -λ.

To explain the asymmetric property of the quantum inversion
behavior as depicted in the left panels of Figure 4, recall that
k(-E°) ≈ k′(E°), the backward reaction rate, andk(E°) < k′-
(E°) for an endothermic (E° > 0) reaction. This leads im-
mediately to the asymmetric property of the solid curve in Figure
4a or c, in which the blue (endothermic) wing falls off faster
than its red (exothermic) wing. This asymmetry decreases as
the viscosity increases since the high viscosity regime behaves
classically.

V. The Adiabatic and Markovian Characters of the
Reaction

We are now in the position to demonstrate (for the cases of
quantum solvation only) the issues in relation to the nature of
ET rate process, as addressed in section III. Let us start with
the adiabatic/nonadiabatic character depicted in Figure 5. Here,
each individualk (thin curves), as function ofτL, is decomposed
into its adiabatickA and nonadiabatickNA components (eq 18).
These two components are given in the upper panel (Figure 5a
or b) and the lower panel (Figure 5c or d), respectively. The
left panels are for theE° ) 0 system (Figure 5a and c), while
the right panels are for theE° + λ ) 0 system (Figure 5b and
d). In each panel, four values of transfer coupling are used:
V/(kJ/mol)) 0.25 (dotted), 0.5 (dashed), 1 (solid), and 2 (dash-
dotted).

Figure 3. The ratio of quantum versus classical rates,k/kcl, as a function
of τL/τther, with the transfer couplingV ) 1 kJ/mol, at various specified
values ofλ andT.

Figure 4. The ratek (left panels) and the classical counterpartkcl (right
panels), as a function ofE°, with λ ) 3 kJ/mol atT ) 298 K. Upper
panels a and b:V ) 1 kJ/mol. Lower panels c and d:V ) 0.01 kJ/
mol. The three values of relative relaxation time scale,τL/τther ) 0.1
(solid), 1 (dotted), and 10 (dashed), are chosen to represent the low-,
intermediate-, and high-viscosity regimes, respectively.
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It is observed that, in the low-viscosity (τL < τther) regime,
the reaction is nonadiabatic; see Figure 5c and d. This
observation may be understood as follows. In the low-viscosity
regime, the solvent fluctuates fast and stabilizes the ET system
in the acceptor state before backscattering takes place. As a
result, the reaction is nonadiabatic in the low-viscosity regime,
at least for the range of transfer coupling strength considered
here. The above picture is also consistent with the observation
that in the diffusion (τL . τther) limit, where k ∝ 1/τL, the
reaction assumes an adiabatic rate process; see Figure 5a and
b.

Figure 6 presents the adiabaticity parameters,kNA/kA, as a
function of reaction endothermicityE°, at V ) 1 kJ/mol, with
the three specified values ofτL/τther ) 0.1, 1, and 10. The inverse
of these values is also used individually to scale the corre-
sponding adiabaticity curves, as depicted in Figure 6. The
adiabaticity curve in the high-viscosity (τL/τther ) 10) regime
looks all normal, being of the minimum about where the rate
maximum is; compare the dashed curve in Figure 4a. The faster
the ET passage, the less adiabatic (or more surface-hopping)
the reaction would be. This feature remains largely unchanged
in the intermediate-viscosity (τL/τther ) 1) case, except for that
the adiabaticity minimum now is slightlynegatiVe, or k > kNA.
It contradicts with the argument made earlier for eq 18. The

abnormality here may be accounted for, at least partially, by
the associated tunneling rate process, as elaborated below.

The abnormality in the adiabaticity parameter is most striking
around the symmetric (E° ≈ 0) system in the low-viscosity (τL/
τther ) 0.1) regime. This is a tunneling dominant scenario, as
discussed in section IV. Considered here is also the strong
transfer coupling case ofV ) 1 kJ/mol. Thus, the observed
abnormality is most likely caused by the coherent ET reaction.
The argument fork < kNA, due to the backscattering-induced
total rate reduction, may no longer be valid. Moreover, we will
see soon that the ET reaction in the observed abnormal region
is non-Markovian, leading to the rate constant description
inadequate at all; see Figure 10 and the comments there.

We now turn to the Markovian/non-Markovian nature of the
ET reaction. The key quantity here is the Markovianicity
parameterκ (eq 27). It involves the reaction ratek and the
equilibrium constantKeq. The detailed knowledge on howKeq

depends on the Debye solvent parameters can be found in ref
25. For the rate in the low-viscosity regime,k ≈ kNA, as depicted
in the lower panels of Figure 5, resulting ink ≈ 2p-1V2Γ/(E°2

+ Γ2), with Γ ) 2p-1λkBTτL for the Debye solvent model in
study; see eq 16 and eq 28. Thus

This equation can be used to estimate the Markovianicity
parameter for a symmetric ET system (E° ) 0, implying also
Keq ) 1) in the low-viscosity regime.

Figure 7 shows the evaluated Markovianicityκ (eq 27) as
function ofτL/τther, for the same ET systems as Figure 2 (without
the classical solvation parts). ForE° + λ ) 0 (lower panel),
the ET rate process behaves Markovian (κ > 1), even for the
strong transfer coupling (V ) 1 kJ/mol) case. Apparently, the
non-Markovian (κ < 1) rate process is most likely to occur in
the Fermi resonance tunneling regime, whereE° ) 0 andτL <
τther, with the approximated expression ofκ given in eq 30. The
above comments are further confirmed by Figure 8, in which

Figure 5. The decomposition of ratek (thin curves), following eq 18,
into the adiabatickA (upper panels) and nonadiabatickNA (lower panels)
components, and plotted as functions ofτL/τther, with λ ) 3 kJ/mol and
T ) 298K. Left panels a and c:E° ) 0. Right panels b and d:E° +
λ ) 0. Each panel involves four values of transfer coupling strength:
V/(kJ/mol)) 0.25 (dotted), 0.5 (dashed), 1 (solid), and 2 (dash-dotted),
respectively.

Figure 6. The adiabaticitykNA/kA as function ofE°, for τL/τther ) 10,
1, and 0.1. The inverse ofτL/τther is also used to scale the individual
adiabaticity curve:V ) 1 kJ/mol,λ ) 3 kJ/mol, andT ) 298K.

Figure 7. The Markovianicity parameterκ (eq 27), as a function of
τL/τther, at V ) 1 (solid) and 0.01 kJ/mol (dashed), withλ ) 3 kJ/mol
andT ) 298 K, for (a)E° ) 0 and (b)E° + λ ) 0.

κ ≈ p-1λkBTτL/V; whenE° ) 0 andτL < τther (30)
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the Markovianicityκ is plotted as function ofE°, at the three
representing values ofτL/τther.

Figure 9 depicts the scaled population evolution,∆(t) (eq 19),
for the ET systems ofE° ) 0 (three left panels) andE° + λ )
0 (three right panels). The upper (a and b), middle (c and d),
and lower (e and f) panels are of the specified values of
viscosity,τL/τther ) 0.1, 1, and 10, respectively. The transfer
coupling strength isV ) 1 kJ/mol. The weak transfer coupling
(V ) 0.01 kJ/mol) counterparts, as depicted in the insets of the
individual panels, are shown all Markovian, withκ . 1 for
their values of Markovianicity (cf. Figures 7 and 8). Included
for comparison in each panel are also the Kubo’s∆K(t) (eq 26)
and Markovian∆Mar ) exp(-wt) counterparts, wherew ) k +

k′. As the envelop of population evolution is concerned, the
significant non-Markovian nature is only observed in Figure
9a, with the relevant part enlarged in Figure 10. This is a
symmetric ET system in the strong transfer (V ) 1 kJ/mol)
coupling and low-viscosity (τL/τther ) 0.1) regime. The corre-
sponding Markovianicity value (κ ) 0.3) is found to agree well
with the aforementioned approximate expression of eq 30.

VI. Concluding Remarks

The quantum solvation, adiabatic/nonadiabatic, and Mark-
ovian/non-Markovian characters are important issues in under-
standing chemical reaction, including ET in solution. Here, we
have revisited these issues in a unified and transparent manner,
with the aid of the Debye solvent model (eq 28) that supports
an analytical solution without additional approximations.25 The
physical picture discussed in this work is however rather general.

We have presented a full account for the effect of quantum
solvation on the ET rate process (section IV). Not just can it
change a barrier crossing event to tunneling, but the quantum
nature of solvent can also lead a classical barrierless reaction
to an effective barrier crossing rate process. The resulting rate
may differ from its classical counterpart by orders of magnitude.
The quantum solvation is found to be distinctly important in
low-viscosity (fast-modulation) solvents. For a realistic solvent
that consists of multiple correlation time scales, only the slow-
modulation solvent modes can be treated classically.

The adiabatic-nonadiabatic decomposition of rate (eq 18)
is practically useful, provided that the total ratek can be
experimentally measured and the nonadiabatic ratekNA can be
readily evaluated via eq 16. The adiabaticity parameterkNA/kA

) kNA/k - 1, as inferred from eq 18, can then be used to discuss
the adiabatic/nonadiabatic nature of the reaction. Interestingly,
a negative adiabaticity may indicate there is a certain degree of
quantum tunneling taking place (cf. Figure 6 and its comments).

We have also proposed to use the Markovianicity parameter
κ (eq 27), based on the Kubo’s motional narrowing function,
for analyzing the Markovian/non-Markovian nature of the
electron-transfer rate process. Note that the solvent relaxation
time scale is typically in the order of picoseconds, whileτther

for room temperature is 26 fs. This amounts to the high-viscosity
or slow-modulation regime of present studies on ET. The
resulting Markovianicity parameter, as depicted in Figures 7
and 8, is typicallyκ > 1 for the aforementioned typical cases.
This may account for why most experimental observations do
support the Markovian (κ > 1) rate constant description.

Figure 8. The Markovianicity parameterκ (eq 27) as a function of
E°, with λ ) 3 kJ/mol andT ) 298 K, atτL/τther ) 0.1 (solid), 1 (dotted),
and 10 (dashed): (a)V ) 1 kJ/mol and (b)V ) 0.01 kJ/mol.

Figure 9. The scaled population∆(t) (eq 19) evolution, evaluated at
τL/τther ) 0.1 (upper panels), 1 (middle panels), and 10 (lower panels).
Left panels: E° ) 0. Right panels:E° + λ ) 0. Here,V ) 1 kJ/mol,
λ ) 3 kJ/mol, andT ) 298 K. Included in each panel are also the
corresponding Kubo’s∆K(t) (eq 26; dashed) and Markovian∆Mar(t)
(dotted). The inset in each panel is theV ) 0.01 kJ/mol counterpart,
where all of these three curves are identical.

Figure 10. The amplified portion of Figure 9a. The scaled population
evolution∆(t) (solid), Kubo’s∆K(t) (dashed), and Markovian∆Mar(t)
(dotted).
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We have pointed out that a non-Markovian rate process is
most likely to occur in the symmetric ET system at the fast-
modulation regime. It is just the opposite to the spectroscopic
case. According to the motional narrowing picture, the fast
modulation leads to a Markovian spectroscopic process.31,32The
above seemingly counterintuitive phenomenon in relation to the
nature of the rate process may be understood as follows. First
of all, the motional narrowing picture is applicable to the
spectrum of rate kernel, rather than the population evolution
itself. The narrower the rate kernel spectrum is, the less
Markovian the rate process would be. However, this is not the
complete picture. The peak position of the rate kernel spectrum,
in relation to where rate constant is evaluated, should also be
considered. It shifts from the classical Marcus’ inversion position
at E° ) -λ in the slow-modulation limit, to the quantum
resonant tunneling atE° ) 0 in the fast-modulation (or motional-
narrowing) regime (see Figure 4, left panels). Equation 30 that
is achieved atE° ) 0 can be considered as the lower bound of
the Markovianicity κ for the ET rate process in the fast-
modulation regime. In this regime, the population transfer may
also exhibit the quantum beat feature that is non-Markovian in
a strict sense. We shall investigate these complex cases
elsewhere.
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Appendix A: Perturbative Rate Kernels

In this appendix, we shall treat the nonadiabatic rate problem,
on the basis of the standard perturbation theory on the reduced
density matrixF(t), assuming that the transfer coupling term of
eq 1 is weak. At the initial timet ) 0, the total composite density
operator isFT(0) ) Fa

eq|a〉〈a|. Consider eq 8 for the coherence
components, which for the two-level ET system reads explicitly
as (settingp ) 1 in this appendix)

HereR ) s + i(E° + λ) + x, and

Combining the initial conditionPa(t ) 0) ) 1 and the
perturbative action ofV̂ together results immediately inP̃a

{0} )
1/s and

Therefore, the lowest order in eq A1 reads

On the other hand, the standard first-order perturbative expres-
sion is

Here

Using the second-cumulant expansion expression, which is exact
for the Gaussian solvation process, results in

We have then

Together with eq A3, we obtain

Together withy{0} ) 0, eq 15a to the lowest order readskNA(s)
) (2V2/p2)ReJ(s), whereJ(s) denotes the Laplace transform of
exp[-g(t)] (cf. eq A7). We obtain therefore eq 16.

Appendix B: Some Useful Relations for Rates

Let us first present some basic relations in connection to the
Laplace transform, defined fors g0 as

It satisfies the boundary condition,L{‚}|sf∞ ) 0, and

Using eq B3, together with the identities ofL{‚}|sf∞ ) 0 and
L{ḟ(t)}|s)0 ) f(∞) - f(0), we obtain immediately

We are now in the position to derive some useful relations
between the non-Markovian rate variables appearing in section
II. From eq 11 andPa(t) + Pb(t) ) 1, we have

From eqs 19 and 22, we have

The above two equations lead to

Together with the first identity of eq B4, we have

The above relation will be used in deriving eq 24.
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